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Periodic Solutions for Neutral Nonlinear
Difference Equations with Functional Delay

Imene Soualhia, Abdelouaheb Ardjouni,
and Ahcene Djoudi

Abstract. We use a variant of Krasnoselskii’s fixed point theorem to
show that the nonlinear difference equation with functional delay

∆x (t) = −a (t) g (x (t)) + c (t) ∆x(t− τ (t)) + q (t, x(t), x(t− τ(t))),

has periodic solutions. For that end, we invert this equation to construct
a fixed point mapping written as a sum of a completely continuous
map and a large contraction which is suitable for the application of
Krasnoselskii-Burton’s theorem.

1. Introduction

In this paper, we are interested in the analysis of qualitative theory of pe-
riodic solutions of difference equation. Motivated by the papers [1]–[13] and
the references therein, we consider the following totally nonlinear difference
equation with functional delay

(1)
∆x (t) = −a (t) g (x (t)) + c (t) ∆x (t− τ (t))

+ q (t, x(t), x(t− τ(t))), t ∈ Z,
where

a, c : Z→ R, q : Z× R× R→ R,
with Z is the set of integers and R is the set of real numbers. Throughout
this paper ∆ denotes the forward difference operator

∆x (t) = x (t+ 1)− x (t) ,

for any sequence {x (t) , t ∈ Z}. For more details on the calculus of difference
equation, we refer the reader to [10].

Clearly, the considered equation (1) has no nontrivial linear term. So,
the inversion of such an equation needs some prepartions. More precisely,
we have to transform the equation by adding a linear term to both sides in
(1). Although the added term destroys a contraction already present but,
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18 Periodic Solutions for Neutral Difference Equations

as we shall see, will replace it with the so called large contraction which is
suitable in the fixed point theory. The integration gives rise to a fixed point
mapping from which we define a compact operator and a large contraction.
We prove that such a definition of maps fits very well to a nice modification
of Krasnoselskii’s fixed point theorem due T. A. Burton so that the existence
of periodic solutions for equation (1) are readily obtained. For details on
Krasnoselskii’s theorem we refer the reader to [14] while full informations on
the modification of Krasnoselskii theorem can be found in [5], [6] or [8]).

In section 2, we present the inversion of difference equations (1) and the
modification of Krasnoselskii’s fixed point theorem. We present our main
results on periodicity in section 3 and at the end we provide an example to
illustrate this work.

2. Inversion of the equation

Let T > 0 be an integer such that T ≥ 1. Define

CT := {ϕ ∈ C (Z,R) : ϕ (t+ T ) = ϕ (t)} ,

where C (Z,R) is the space of all real valued functions. Then (CT , ‖.‖) is a
Banach space with the supremum norm

‖ϕ‖ := sup
t∈[0,T−1]

|ϕ(t)| .

We will assume that the following periodicity conditions hold.

(2) a (t+ T ) = a (t) , c (t+ T ) = c (t) , τ (t+ T ) = τ (t) , τ (t) ≥ τ∗ > 0,

for some constant τ∗. Also, we assume that

(3) 0 < a (t) < 1.

Further, we require that q (t, x, y) is periodic in t and Lipschitz continuous
in x and y. That is,

(4) q (t+ T, x, y) = q (t, x, y) ,

and there are positive constants k1, k2 such that

(5) |q (t, x, y)− q (t, z, w)| ≤ k1 |x− z|+ k2 |y − w| ,

for any x, y, z, w ∈ R.
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Lemma 2.1. Suppose that 1−
t−1∏

s=t−T
(1− a (s)) 6= 0, conditions (2) and (3)

hold. Then x ∈ CT is a solution of equation (1) if and only if

(6)

x(t) = c (t− 1)x (t− τ (t)) +

(
1−

t−1∏
s=t−T

(1− a (s))

)−1

·

[
t−1∑

r=t−T
a (r) (x (r)− g (x (r)))

t−1∏
s=r+1

(1− a (s))

+
t−1∑

r=t−T

[
q (r, x (r) , x (r − τ (r)))

−µ (r)x (r − τ (r))
] t−1∏
s=r+1

(1− a (s))

]
,

where µ (r) = c (r)− c (r − 1) (1− a (r)).

Proof. Let x ∈ CT be a solution of (1). First, write this equation as

∆x (t) + a (t)x (t) = a (t)x (t)− a (t) g (x (t))

+ c (t) ∆x (t− τ (t)) + q (t, x(t), x(t− τ(t))).

Multiplying both sides of the above equation by
t∏

s=0
(1− a (s))−1 and then

summing from t− T to t− 1, we obtain
t−1∑

r=t−T
∆

[
r−1∏
s=0

(1− a (s))−1 x (r)

]

=

t−1∑
r=t−T

[a (r) {x (r)− g (x (r))}+ c (r) ∆x (r − τ (r))

+ q (r, x (r) , x (r − τ (r)))]
r∏

s=0

(1− a (s))−1 .

As a consequence, we arrive at
t−1∏
s=0

(1− a (s))−1 x (t)−
t−T−1∏
s=0

(1− a (s))−1 x (t− T )

=

t−1∑
r=t−T

[a (r) {x (r)− g (x (r))}+ c (r) ∆x (r − τ (r))

+ q (r, x (r) , x (r − τ (r)))]

r∏
s=0

(1− a (s))−1.
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Now, by dividing both sides of the above equation by
t−1∏
s=0

(1− a (s))−1

and using the fact x (t) = x (t− T ) we get

x (t) =

(
1−

t−1∏
s=t−T

(1− a(s))

)−1

×
t−1∑

r=t−T
[a (r) {x (r)− g (x (r))}+ c (r) ∆x (r − τ (r))

+q (r, x (r) , x (r − τ (r)))]

t−1∏
s=r+1

(1− a (s)).

But,

t−1∑
r=t−T

c (r) ∆x (r − τ (r))

t−1∏
s=r+1

(1− a (s)) = c (t− 1)x (t− τ (t))

− c (t− T − 1)x (t− T − τ (t− T ))
t−1∏

s=t−T
(1− a (s))

−
t−1∑

r=t−T
x (r − τ (r)) ∆

[
c (r − 1)

t−1∏
s=r

(1− a (s))

]
.

Thus, equation (7) becomes(
1−

t−1∏
s=t−T

(1− a (s))

)−1
×

[
t−1∑

r=t−T
a (r) {x (r)− g (x (r))}

t−1∏
s=r+1

(1− a (s))

+

t−1∑
r=t−T

q (r, x (r) , x (r − τ (r)))

t−1∏
s=r+1

(1− a (s))

+

(
1−

t−1∏
s=t−T

(1− a (s))

)
c (t− 1)x (t− τ (t))

−
t−1∑

r=t−T
x (r − τ (r)) ∆

(
c (r − 1)

t−1∏
s=r

(1− a (s))

)]

= c (t− 1)x (t− τ (t)) +

(
1−

t−1∏
s=t−T

(1 + a (s))

)−1

×
t−1∑

r=t−T
[a (r) {x (r)− g (x (r))} − µ (r)x (r − τ (r))
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+q (r, x (r) , x (r − τ (r)))]
t−1∏

s=r+1

(1− a (s)),

where µ (r) = c (r)− c (r − 1) (1− a (r)). �

As mentioned above, we employ, in our analysis, a fixed point theorem in
which the notion of a large contraction is required as sufficient conditions.
For that, we give the following definition which can be found in [8] or [6].

Definition 2.1 (Large contraction). Let (M,d) be a metric space and B :
M →M . B is said to be a large contraction if ϕ, ψ ∈M , with ϕ 6= ψ then
d (Bϕ,Bψ) < d (ϕ,ψ) and if for all ε > 0 there exists δ < 1 such that

[ϕ,ψ ∈M , d (ϕ,ψ) ≥ ε] =⇒ d (Bϕ,Bψ) ≤ δd (ϕ,ψ) .

Theorem 2.1. Let (M,d) be a complete metric space and B be a large
contraction. Suppose there is an x ∈M and L > 0, such that d (x,Bnx) ≤ L
for all n ≥ 1. Then B has a unique fixed point in M .

The next theorem, which constitutes a basis for our main results, is a
reformulated version of Krasnoselskii’s fixed point theorem. This version is
due to T. A. Burton (see [5], [6]).

Theorem 2.2 (Krasnoselskii-Burton). Let M be a closed bounded convex
non-empty subset of a Banach space (S, ‖.‖). Suppose that A, B map M
into M and that

(i) for all x, y ∈M =⇒ Ax+By ∈M ,
(ii) A is continuous and AM is contained in a compact subset of M ,
(iii) B is a large contraction.
Then there is a z ∈M with z = Az +Bz.

We will use this theorem to prove the existence of periodic solutions for
(1). We begin with the following result.

Theorem 2.3. Let ‖.‖ be the supremum norm,

M := {ϕ ∈ C (Z,R) , ‖ϕ‖ ≤ L} ,

and define

(7) (Fϕ) (t) := ϕ (t)− g (ϕ (t)) .

Suppose that g is satisfying the following conditions
H1. g : R→ R is continuous on [−L,L] and differentiable on (−L,L),
H2. The function g is strictly increasing on [−L,L],
H3. supt∈(−L,L) g

′ (t) ≤ 1.
Then the mapping F is a large contraction on the set M .

The proof of this theorem can be found in [1, Theorem 3.4 p 9].
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3. Existence of periodic solutions

To apply Theorem 2.2, we need to define a Banach space P, a bounded
convex subset M of P and construct two mappings, one is a large con-
traction and the other is compact. So, we let (P, ‖.‖) = (CT , ‖.‖) and
M = {ϕ ∈ P | ‖ϕ‖ ≤ L}, where L is a positive constant. We express equa-
tion (6) as

ϕ (t) = (Bϕ)(t) + (Aϕ)(t) := (Hϕ)(t),

where A,B : M → P are defined by

(8)

(Aϕ)(t) = c (t− 1)ϕ (t− τ (t)) +

(
1−

t−1∏
s=t−T

(1− a (s))

)−1

×
t−1∑

r=t−T
[q (r, ϕ (r) , ϕ (r − τ (r)))− µ (r)ϕ (r − τ (r))]

t−1∏
s=r+1

(1− a (s)),

and

(9)

(Bϕ)(t) =

(
1−

t−1∏
s=t−T

(1− a (s))

)−1

×
t−1∑

r=t−T
a (r) (ϕ (r)− g (ϕ (r)))

t−1∏
s=r+1

(1− a (s)).

Suppose further that the following hypotheses hold true

(10) |µ (t)| ≤ δa (t) ,

(11) ((k1 + k2)L+ |q (t, 0, 0)|) ≤ βLa (t) ,

(12) α = max
t∈[0,T ]

|c (t− 1)| ,

(13) J(α+ δ + β) ≤ 1,

where α, β, J are constants with J ≥ 3.
Now we have sufficient elements to prove that the mapping H has a fixed

point which solves (1).

Lemma 3.1. For A defined in (8), suppose that (2)–(5) and (10)–(13) hold
then A : M → M is continuous in the maximum norm and maps M into a
compact subset of M .

Proof. We first show that A : M →M . Let ϕ ∈M . Evaluate (8) at t+ T ,

(Aϕ)(t+ T ) = c (t+ T − 1)ϕ (t+ T − τ (t+ T )) +

(
1−

t+T−1∏
s=t

(1− a (s))

)−1
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×
t+T−1∑
r=t

[q (r, ϕ (r) , ϕ (r − τ (r)))− µ (r)ϕ (r − τ (r))]
t+T−1∏
s=r+1

(1− a (s)).

Let j = r − T , then

(Aϕ)(t+ T ) = c (t+ T − 1)ϕ (t+ T − τ (t+ T )) +

(
1−

t+T−1∏
s=t

(1− a (s))

)−1

×
t−1∑

j=t−T
[q (j + T, ϕ (j + T ) , ϕ (j + T − τ (j + T )))

−µ (j + T )ϕ (j + T − τ (j + T ))]
t+T−1∏

s=j+T+1

(1− a (s)).

Now, by (2) and letting k = s− T , we see that

(Aϕ)(t+ T ) = c (t− 1)ϕ (t− τ (t)) +

(
1−

t−1∏
k=t−T

(1− a (s))

)−1

×
t−1∑

j=t−T
[q (j, ϕ (j) , ϕ (j − τ (j)))− µ (j)ϕ (j − τ (j))]

t−1∏
k=j+1

(1− a (k))

= (Aϕ) (t) .

That is, A : CT → CT .
In view of (5) we derive the following inequality

|q (t, x, y)| = |q (t, x, y)− q (t, 0, 0) + q (t, 0, 0)|
≤ |q (t, x, y)− q (t, 0, 0)|+ |q (t, 0, 0)|
≤ k1 ‖x‖+ k2 ‖y‖+ |q (t, 0, 0)| .

Note that from (3), we have 1 −
t−1∏

k=t−T
(1 − a (s)) > 0. Consequently,

having in mind conditions (10)–(13), we obtain for any ϕ ∈M ,

|(Aϕ) (t)| ≤ |c (t− 1)ϕ (t− τ (t))|+

(
1−

t−1∏
s=t−T

(1− a (s))

)−1

×
t−1∑

r=t−T
[|µ (r)ϕ (r − τ (r))|+ |q (r, ϕ (r) , ϕ (r − τ (r)))|]

t−1∏
s=r+1

(1− a (s))

≤ α |ϕ (t− τ (t))|+

(
1−

t−1∏
s=t−T

(1− a (s))

)−1
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×
t−1∑

r=t−T
[δa (r) |ϕ (r − τ (r))|+ ((k1 + k2)L+ |q (t, 0, 0)|)]

t−1∏
s=r+1

(1− a (s))

≤ α |ϕ (t− τ (t))|+

(
1−

t−1∏
s=t−T

(1− a (s))

)−1

×
t−1∑

r=t−T
L [δ + β] a (r)

t−1∏
s=r+1

(1− a (s))

≤ αL+

(
1−

t−1∏
s=t−T

(1− a (s))

)−1 t−1∑
r=t−T

L [δ + β] a (r)
t−1∏

s=r+1

(1− a (s))

≤ (α+ δ + β)L ≤ L

J
≤ L.
Thus Aϕ ∈M .
Hence, A maps M into itself. That is A : M →M .
Next we show that A is continuous in the supremum norm. Let ϕ,ψ ∈M ,

and let

η :=

(
1−

t−1∏
s=t−T

(1− a (s))

)−1
.

Then,

|(Aϕ) (t)− (Aψ) (t)| ≤ |c (t− 1)| |ϕ (t− τ (t))− ψ (t− τ (t))|

+

(
1−

t−1∏
s=t−T

(1− a (s))

)−1 t−1∑
r=t−T

[|µ (r)| |ϕ (r − τ (r))− ψ (r − τ (r))|

+q (r, ϕ (r) , ϕ (r − τ (r)))− q (r, ψ (r) , ψ (r − τ (r)))]

t−1∏
s=r+1

(1− a (s))

≤ α ‖ϕ− ψ‖+ δ

(
1−

t−1∏
s=t−T

(1− a (s))

)−1 t−1∑
r=t−T

a (r)

t−1∏
s=r+1

(1− a (s))

+ (k1 + k2) ‖ϕ− ψ‖

(
1−

t−1∏
s=t−T

(1− a(s))

)−1 t−1∑
r=t−T

t−1∏
s=r+1

(1− a (s))

≤ (α+ δ + (k1 + k2)Tη) ‖ϕ− ψ‖ .
Let ε > 0 be arbitrary. Define γ = ε/K with K = α + δ + (k1 + k2)Tη,

where k1, k2 are given by (5). Then, for ‖ϕ− ψ‖ ≤ γ we obtain

‖Aϕ−Aψ‖ ≤ K ‖ϕ− ψ‖ < ε.

This proves that A is continuous.
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Left to show that A maps bounded subsets into compact sets. As M
is bounded and we have proved that A is continuous and AM is subset of
RT which is bounded. Thus AM is contained in a compact subset of M .
Therefore, A is continuous in M and AM is contained in a compact subset
of M . �

In the next result we assume that for all t ∈ R and ψ ∈M ,

(14) max (|F (L)| , |F (−L)|) ≤
(
J − 1

J

)
L,

where (Fϕ)(t) = ϕ (t)− g (ϕ (t)) is the one seen in (7).

Lemma 3.2. Let B be defined by (9) and suppose that (2)–(3), (14) and all
conditions of Proposition (2.3) hold. Then B : M → M is a large contrac-
tion.

Proof. We first show that B : M →M .
Let ϕ ∈M . Evaluate (9) at t+ T .

(Bϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1− a (s))

)−1

×
t+T−1∑
r=t

a (r) (ϕ (r + 1)− g (ϕ (r + 1)))

t+T−1∏
s=r+1

(1− a (s)) .

Let j = r − T , then

(Bϕ) (t+ T ) =

(
1−

t+T−1∏
s=t

(1− a (s))

)−1

×
t−1∑

j=t−T
a (j + T ) (ϕ (j + T )− g (ϕ (j + T )))

t+T−1∏
s=j+T+1

(1− a (s)) .

Now let k = s− T , then

(Bϕ) (t+ T ) =

(
1−

t−1∏
k=t−T

(1− a (s))

)−1

×
t−1∑

j=t−T
a (j) (ϕ (j)− g (ϕ (j)))

t−1∏
k=j+1

(1− a (k))

= (Bϕ) (t) .

That is, B : CT → CT .
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Note that from (3), we have 1−
t−1∏

s=t−T
(1− a (s)) > 0. So, for any ϕ ∈M ,

we have

|(Bϕ) (t)| ≤

(
1−

t−1∏
s=t−T

(1− a (s))

)−1

×
t−1∑

r=t−T
a (r) |ϕ (r)− g (ϕ (r))|

t−1∏
s=r+1

(1− a (s))

≤

(
1−

t−1∏
s=t−T

(1− a (s))

)−1

×
t−1∑

r=t−T
a (r) max (|F (L)| , |F (−L)|)

t−1∏
s=r+1

(1− a (s))

≤
(
J − 1

J

)
L

(
1−

t−1∏
s=t−T

(1− a (s))

)−1 t−1∑
r=t−T

a (r)

t−1∏
s=r+1

(1− a (s))

≤ L.
Thus Bϕ ∈ M . Consequently, we have B : M → M . It remains to show

that B is a large contraction with a unique fixed point inM . From Theorem
2.3 we know that ϕ (t) − g (ϕ (t)) is a large contraction in the maximum
norm. For any ε, let ς < 1 be the constant found for ϕ (t)− g (ϕ (t)). Then,

‖Bϕ− Bψ‖ ≤

(
1−

t−1∏
s=t−T

(1− a (s))

)−1

×
t−1∑

r=t−T
a (r) ς ‖ϕ− ψ‖

t−1∏
s=r+1

(1− a (s))

≤ ς ‖ϕ− ψ‖ .
Thus, ‖Bϕ− Bψ‖ ≤ ς ‖ϕ− ψ‖. Consequently, B is a large contraction.

�

Theorem 3.1. Let (CT , ‖.‖) be the Banach space of continuous T-periodic
real valued functions and M = {ϕ ∈ CT , ‖ϕ‖ ≤ L}, where L, is positive
constant. Suppose (2)–(3), (10)–(14) and all conditions of Theorem 2.3
hold. Then, equation (1) prossesses a T-periodic solution lying in the subset
M .

Proof. By Lemma 3.1, A : M → M is continuous and AM is contained in
a compact set. Also, from Lemma 3.2, the mapping B : M → M is a large
contraction. Moreover, making use of (14), we see that if ϕ,ψ ∈M , then

‖Aϕ+ Bψ‖ ≤ ‖Aϕ‖+ ‖Bψ‖



Imene Soualhia, Abdelouaheb Ardjouni, and Ahcene Djoudi 27

≤ L

J
+

(
J − 1

J

)
L ≤ L.

Thus Aϕ+ Bψ ∈M .
Clearly, all hypotheses of Krasnoselskii-Burton’s theorem are satisfied.

Thus, there exists a fixed point ϕ ∈M such that ϕ = Aϕ+ Bϕ. Hence (1)
has a T- periodic solution in M . �

4. Example

We consider the totally nonlinear difference equation with functional delay

(15)
∆x (t) = −0.0536x3 (t) + 2.10−2 cos (t) ∆x (t− τ (t))

+ 10−4 (sin (x (t)) + cos (x (t− τ (t)))) , t ∈ Z,

where
τ (t+ T ) = τ (t) .

So, we have

a (t) = 0.536, c (t) = 2.10−2 cos (t) , g (x) = x3, L =
√

3/3,

q (t, x, y) = 10−4 (sin (x) + cos (y)) .

Clearly, q (t, x, y) is periodic in t and Lipschitz continuous in x and y. That
is

q (t+ T, x, y) = q (t, x, y) ,

and

|q (t, x, y)− q (t, z, w)| =
∣∣10−4 (sin (x)− sin (z) + cos (y)− cos (w))

∣∣
≤
∣∣10−4 (sin (x)− sin (z))

∣∣+
∣∣10−4 (cos (y)− cos (w))

∣∣
≤ 10−4 |x− z|+ 10−4 |y − w| .

We have

α = 2.10−2

|µ (t)| =
∣∣2.10−2 cos (t)− 2.10−2 (1− 0.536) cos (t− 1)

∣∣
≤ 0.122 ≤ 0.02× 0.536 ≤ δa (t) , ∀t ∈ Z,

and

((k1 + k2)L+ |q (t, 0, 0)|) = 2.10−4
(√

3/3
)

+ 10−4

≤ 0.16
(

0.536×
(√

3/3
))

≤ βLa (t) , ∀t ∈ Z.

By substituting α, β, δ in (13), we obtain J ∈ [3, 5]. Define M = {ϕ ∈
CT | ‖ϕ‖ ≤ L}, where L =

√
3/3. Then, the difference equation (15)

possesses, by Theorem 3.1, a T -periodic solution in M .
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